Core Mathematics

ANSWERBOOK

Unit 1
(C) 2018 Irina Kovalenko

Cubic Functions and Stationary Points

Calculator not allowed (for factorising)

Calculator allowed (only for finding Stationary Points)

You must show all working

You must label all the points and graphs

Total marks for the paper - $\mathbf{9 0}$

Sketch the graph of the following functions, using either algebraic division or the method of comparing of the coefficients. Use differentiation to find local maximum and minimum points. Show the points of intersection with the axes:

$$
\begin{equation*}
y=x^{3}-6 x^{2}+11 x-6 \tag{1}
\end{equation*}
$$

$$
x=2 \text { is a factor }\left(2^{3}-6 \times 2^{2}+11 \times 2-6=0\right)
$$

$$
\begin{aligned}
& \left(x^{3}-6 x^{2}+11 x-6\right) \div(x-2)=x^{2}-4 x+3 \\
& x^{2}-4 x+3=(x-1)(x-3) \Rightarrow x=1 \text { or } x=3 \\
& \quad x=0 \quad y=-6
\end{aligned}
$$

$$
\begin{aligned}
& \frac{d y}{d x}=3 x^{2}-12 x+11 \quad 3 x^{2}-12 x+11=0 \quad x=1.423 \quad \text { or } \quad x=2.577 \\
& \text { stationary points }(1.423,0.385) \quad(2.577,-0.385)
\end{aligned}
$$

$$
\begin{equation*}
y=x^{3}+2 x^{2}-x-2 \tag{15}
\end{equation*}
$$

$$
\begin{gathered}
x=1 \quad \text { is a factor }\left(1^{3}+2 \times 1^{2}-1-2=0\right) \\
\left(x^{3}+2 x^{2}-x-2\right) \div(x-1)=x^{2}+3 x+2 \\
x^{2}+3 x+2=(x+2)(x+1) \Rightarrow x=-2 \text { or } x=-1 \quad(-2,0) \quad(-1,0) \quad(1,0) \\
x=0 \quad y=-2 \quad(0,-2)
\end{gathered}
$$

$\frac{d y}{d x}=3 x^{2}+4 x-1 \quad 3 x^{2}+4 x-1=0 \quad x=-1.549 \quad$ or $\quad x=0.215$
stationary points: $(-1.549,0.631)(0.215,-2.113)$

$$
\begin{equation*}
y=x^{3}+x^{2}-4 x-4 \tag{15}
\end{equation*}
$$

$x=2 \quad$ is a factor $\quad\left(2^{3}+2^{2}-4 \times 2-4=0\right)$
$\frac{\left(x^{3}+x^{2}-4 x-4\right) \div(x-2)=x^{2}+3 x+2}{x^{2}+3 x+2=(x+2)(x+1) \Rightarrow x=-2}$ or $x=-1 \quad(-2,0) \quad(-1,0) \quad(2,0)$
$x=0 \quad y=-4 \quad(0,-4)$
$\frac{d y}{d x}=3 x^{2}+2 x-4 \quad 3 x^{2}+2 x-4=0 \quad x=-1.535 \quad$ or $\quad x=0.869$
stationary points: $(-1.535,0.879)(0.869,-6.065)$

(C) 2018 Irina Kovalenko

Given that $f(x)=\left(x^{2}-6 x\right)(x-2)+3 x$
a) express $f(x)$ in the form $x\left(a x^{2}+b x+c\right)$, where a, b and c are constants
$f(x)=x^{3}-6 x^{2}-2 x^{2}+12 x+3 x$
$f(x)=x^{3}-8 x^{2}+15 x$
$f(x)=x\left(x^{2}-8 x+15\right)$
b) hence factorise $f(x)$ completely
$f(x)=x\left(x^{2}-8 x+15\right)$
$f(x)=x(x-3)(x-5)$
c) sketch the graph of $y=f(x)$, showing the coordinates of each point at which the graph meets the axes.
$f(x)=x(x-3)(x-5) \quad \Rightarrow \quad x=0, x=3$ or $x=5 \quad(0,0)(3,0)(5,0)$

| $x=0 \quad y=0 \quad(0,0)$ | |
| :--- | :--- | :--- |
| $\frac{d y}{d x}=3 x^{2}-16 x+15 \quad 3 x^{2}-16 x+15=0$ | $x=1.214 \quad$ or $\quad x=4.12$ |

stationary points: $(1.214,8.209)(4.12,-4.061)$

(Total 15 marks)
Qu
On the same axes sketch the graphs of the curves with equations

$$
\begin{aligned}
& \text { i } y=x^{2}(x-2) \\
& \text { ii } y=x(6-x)
\end{aligned}
$$

and indicate on your sketches the coordinates of all the points where the curves cross the axes.

$$
\begin{align*}
& \text { i } y=x^{3}-2 x^{2} \tag{0,0}\\
& y=x^{2}(x-2) \Rightarrow \\
& x=0 \text { or } x=2 \\
& x=0 \quad y=0 \tag{0,0}\\
& y^{\prime}=3 x^{2}-4 x \quad 3 x^{2}-4 x=0 \quad x=0 \quad \text { or } \\
& x=4 / 3 \\
& (0,0) \tag{1.333,-1.185}\\
& \text { ii } y=6 x-x^{2} \quad y=x(6-x) \Rightarrow \quad x=0 \text { or } x=6 \tag{0,0}\\
& x=0 \quad y=0 \tag{0,0}\\
& y^{\prime}=6-2 x \quad 6-2 x=0 \quad x=3 \tag{3,9}
\end{align*}
$$

b) Use algebra to find the coordinates of the points where the graphs intersect.
$\left\{\begin{array}{c}y=x^{3}-2 x^{2} \\ y=6 x-x^{2}\end{array}\right.$

$$
\begin{array}{ll}
x^{3}-2 x^{2}=6 x-x^{2} & \\
x^{3}-x^{2}-6 x=0 & \\
x\left(x^{2}-x-6\right)=0 & \\
x(x+2)(x-3)=0 & \begin{array}{l}
x_{1}=0, x_{2}=-2 \text { and } x_{3}=3 \\
y_{1}=0, y_{2}=-16 \text { and } y_{3}=9
\end{array}
\end{array}
$$

the points of intersection: $(-2,-16)(0,0)(3,9)$
(Total 15 marks)
(C) 2018 Irina Kovalenko
(C) 2018 Irina Kovalenko

