Applied Mathematics

ASSIGNMENT

Unit 2

name of student.
name of teacher \qquad

Date	ASGMT	Questions for Completion	Areas for Improvement
	1 App		
	2 App		
	3 App		
	Ext W		
Evaluation:			
	4 App		
	Ext W		
	5 App		
	6 App		
Evaluation:			

	\%
ASGMT 1 App	
ASGMT 2 App	
ASGMT 3 App	
Extension Work	
Test 1 App	
ASGMT 4 App	
Extension Work	
ASGMT 5 App	
ASGMT 6 App	
Test 2 App	
SF Test App	

Economic Functions

Assignment 1 App

Calculator allowed

You must show all working

You must label all the points and graphs
Total marks for the paper - $\mathbf{1 0 0}$

Q1

Given the following demand function calculate P when $Q=15$:
$Q=25-5 P$
$Q=80-2.5 P$
\qquad
\qquad

Using the grid (below) plot the graphs of the demand functions.

(Total 12 marks)
-1

A supply function is given by the equation $20 P=80+5 Q$
a) What is the slope and intercept of the function?
\qquad
b) Calculate the zero of the function.
c) Using the grid below plot the graph of the supply function.
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad

Q3

Given the demand function of a monopolist as $Q=50-0.5 P$
a) Write down the equation for the demand function in the form $P=f(Q)$.
b) Write down the equation for $T R$ in the form $T R=f(Q)$
c) Calculate $T R$ when $Q=10$.
d) Calculate the zeroes of the $T R$ function.
e) Calculate maximum revenue.
f) Using the grid below, draw the graph of the $T R$ function.

The demand and supply functions for a good (jeans) are given by:

$$
\begin{aligned}
& \text { demand function } \mathrm{P}_{\mathrm{d}}=50-3 \mathrm{Q}_{\mathrm{d}} \\
& \text { supply function } \mathrm{P}_{\mathrm{s}}=14+1.5 \mathrm{Q}_{\mathrm{s}},
\end{aligned}
$$

where P is the price of a pair of jeans; Q is the number of pairs of jeans.
Calculate the equilibrium price and quantity.
\qquad
\square

Confirm your answer graphically.

\qquad
\qquad
\qquad

A firm's total cost function is given by the equation $T C=200+3 \mathrm{Q}$, while the demand function is given by the equation $\mathrm{P}=107-2 \mathrm{Q}$
a) Write down the equation of the total revenue function.
\qquad
\qquad
b) Graph the total revenue function and find maximum total revenue.
\qquad

c) Plot the total cost function on the same diagram as in b).
\qquad
\qquad
\qquad
\qquad
d) Calculate break-even points algebraically. Confirm your answer graphically.
\qquad
e) State the range of values of Q for which the company makes a profit.
-
\qquad

(Total 20 marks)

\qquad
\qquad
\qquad
\qquad
\qquad

Q6
The demand function for a monopolist is given by the equation $Q=120-3 P$.
a) Find equations for $T R$ (total revenue) and $M R$ (marginal revenue) functions in the form $T R=f(Q)$ and $M R=f(Q)$.
\qquad

b) Calculate maximum $T R$ using the value of Q when $M R=0 . \quad$ (3) | Leave |
| :--- |
| blank |

c) Using the grid below sketch the graphs of $T R$ and $M R$ functions.

Q7

Given the demand function $Q=150-0.5 P$ and total cost function $T C=564+14 Q$.
a) Write down the equations for $T R$ and the profit functions
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
b) Calculate the break-even points algebraically.
-
\qquad
\qquad
\square
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
c) Use differentiation to calculate the number of units which must be produced to maximise $T R$ and the profit.
\qquad
\qquad
\qquad
\qquad
\square
\square
\square
\qquad
\square
-
\qquad
\square

\square
\qquad

\qquad
\qquad
\qquad
\qquad

